Histoplasmosis among hospitalized febrile patients in northern Tanzania

Sarah M. Lofgren\(^a\), Emily J. Kirsch\(^b\), Venance P. Maro\(^{c,d}\), Anne B. Morrissey\(^a\), Levina J. Msuya\(^{c,d}\), Grace D. Kinabo\(^{c,d}\), Wilbrod Saganda\(^a\), Helmut C. Diefenthal\(^{c,d}\), Habib O. Ramadhan\(^\circ\), L. Joseph Wheat\(^b\), and John A. Crump\(^{a,c,d,f,g,*}\)

\(^a\)Division of Infectious Diseases and International Health, Department of Medicine, Box 102359, Duke University Medical Center, Durham, NC 27710, USA

\(^b\)Miravista Diagnostics, 4444 Decatur Blvd., Suite 300, Indianapolis, IN 46241, USA

\(^c\)Kilimanjaro Christian Medical Centre, PO Box 3010, Moshi, Tanzania

\(^d\)Kilimanjaro Christian Medical College, PO Box 3010, Tumaini University, Moshi, Tanzania

\(^\circ\)Mawenzi Regional Hospital, PO Box 3054, Moshi, Tanzania

\(^\circ\)Department of Pathology, Box 3712, Duke University Medical Center, Durham, North Carolina, USA

\(^\circ\)Duke Global Health Institute, Box 90519, Duke University, Durham, NC 27708, USA

Abstract

Histoplasmosis may be common in East Africa but the diagnosis is rarely confirmed. We report 9 (0.9%) cases of probable histoplasmosis retrospectively identified among 970 febrile inpatients studied in northern Tanzania. Median (range) age was 31 (6, 44) years, 6 (66.7%) were female, 6 (66.7%) HIV-infected; 7 (77.8%) were clinically diagnosed with tuberculosis or bacterial pneumonia. Histoplasmosis is an important cause of febrile illness in Tanzania but is rarely considered in the differential diagnosis. Increased clinician awareness and availability of reliable diagnostic tests may improve patient outcomes.

Keywords

Africa; Histoplasmosis; HIV; Tanzania; Tuberculosis
1. Introduction

Histoplasmosis is known to occur in sub-Saharan Africa but is rarely diagnosed. In settings with limited laboratory capacity, histoplasmosis may be difficult to distinguish from diseases with similar clinical features, such as tuberculosis and bacterial pneumonia. While *Histoplasmosis capsulatum* var. *duboisii* (*H. duboisii*) appears to occur more often in west Africa and *Histoplasmosis capsulatum* var. *capsulatum* (*H. capsulatum*) predominates in southern Africa, both varieties have been documented to cause human infection in East Africa.¹

In Tanzania, *H. duboisii* has been isolated from environmental samples² and *H. capsulatum* has been reported to cause human disease in the coastal areas around the cities of Tanga³ and Dar es Salaam,¹ and has been documented in a Tanzanian expatriate.⁴ We report nine human cases of histoplasmosis from northern Tanzania identified by urine or serum antigen testing and highlight the challenge in clinical diagnosis of histoplasmosis in areas with limited laboratory capacity.

2. Materials and methods

From August 2007 through September 2008, we enrolled 870 febrile inpatients at Kilimanjaro Christian Medical Centre and Mawenzi Regional Hospital in Moshi, Tanzania, as part of a study to characterize the etiology of febrile illness.⁵,⁶ A standardized clinical history and physical examination was done by a member of the research team. Among other diagnostic samples, blood cultures, acute urine and acute and convalescent serum were collected. After completion of study enrollment and follow up, acute urine and serum samples that had been frozen at −80 °C and transported on dry ice were tested retrospectively for *Histoplasma* antigen using a sandwich enzyme immunoassay (EIA) using polyclonal antibodies to *H. capsulatum* (the MVista *Histoplasma capsulatum* Quantitative Antigen EIA; Miravista Diagnostics, Indianapolis, IN, USA). Serum specimens were treated with ethylene diamine tetraacetic acid at 104 °C before testing for antigen.⁷ Specimens yielding a result above the cutoff were regarded as positive.⁸,⁹ All positive results were confirmed by repeat testing. A case of probable histoplasmosis was defined as a patient with *Histoplasma* antigen test result from detectable <0.6 ng to >39.0 ng/mL.

3. Results

Of 870 patients enrolled, 628 (72.2%) patients had urine available for *Histoplasma* urine antigen testing. Of these, 7 (1.1%) were found to be positive with concentrations ranging from <0.6 to >39.0 ng/mL. Of these with *Histoplasma* antigenuria, 4 also had serum available for testing and 2 (50%) of these also had detectable *Histoplasma* antigen in their serum. Of those who had urine tested an additional 200 patients (100 pediatric and 100 adult) had acute serum tested for *Histoplasma* antigen. From these samples 2 additional patients were found to have serum positive for *Histoplasma* antigen. In total, 9 (0.9%) patients met the definition of probable histoplasmosis. All results were confirmed positive on repeat testing. No patient had a positive blood culture for *H. capsulatum* (Table 1). *Histoplasma* testing was done 6–18 months after sample collection. Once available, results were provided to the clinical team.

4. Discussion

We demonstrate that *Histoplasma* is an etiologic agent of fever among inpatients with and without HIV infection in northern Tanzania.⁵,⁶ However, histoplasmosis was not considered in the differential diagnosis by clinicians and without the laboratory capacity to support...
histoplasmosis diagnosis; patients with probable histoplasmosis were diagnosed clinically with tuberculosis, bacterial pneumonia, or malaria. The majority of patients with histoplasmosis were treated for other causes of disease based on perceptions of common etiologies for clinical syndromes. Improved awareness of the presence of histoplasmosis may lead to incorporation of the infection in differential diagnosis, particularly among persons not responding to empiric treatment for tuberculosis, community-acquired pneumonia, and malaria.

The diagnosis of histoplasmosis in this study was by antigen testing. While we collected blood cultures on all participants, blood culture techniques that would reliably detect Histoplasma fungemia were only used among adults and adolescents. In all cases Histoplasma antigen testing was reproducibly positive. The sensitivity of the Histoplasma antigen test among HIV-infected patients is 100% in urine and 92.3% in serum, and the specificity of both is 99% among controls. Detection of antigen is a basis for a probable diagnosis of histoplasmosis in patients with compatible clinical findings. While it is uncertain whether our patients had H. capsulatum or H. duboisii, as the antigen detected in both mycoses is cross reactive, clinical features and environmental surveys and other case series done in East Africa suggest that H. capsulatum is likely to predominate.

Although Histoplasma has been isolated from patient samples in Tanzania in the past, none of the patients reported in our series had positive fungal cultures. Consequently, the diagnosis of probable histoplasmosis relied on the combination of antigen detection and clinical features. Future research should focus on identifying culture-confirmed histoplasmosis to allow validation of non-culture diagnostic techniques in the sub-Saharan Africa setting. Adaptation and validation of Histoplasma antigen tests for use in low resource settings could assist with recognition of patients with the infection.

In conclusion, histoplasmosis is a cause of fever among inpatients in northern Tanzania but is rarely considered by clinicians in settings with limited laboratory capacity. Patients with histoplasmosis often receive a clinical diagnosis of tuberculosis, bacterial pneumonia or malaria leading to inappropriate treatment. Improved access to diagnostic tests for histoplasmosis, including the development of an appropriately validated simple Histoplasma antigen test suitable for use in low- and middle-income countries where histoplasmosis is endemic may improve patient outcomes.

Acknowledgments

The authors thank Ahaz T. Kulanga, MBA, for providing administrative support to this study and Pilli M. Chambo, Beatu V. Kyara, Beatu A. Massave, Anna D. Mtei, Godfrey S. Mushi, Lilian E. Ngowi, Boniface N. Njau, Flora M. Nkya, and Winfrida H. Shirima for interviewing and enrolling study participants. We are grateful to the leadership, clinicians and patients of KCMC and MRH for their contributions to this research. We thank Miravista Diagnostics, Indianapolis, Indiana, USA, for performing Histoplasma capsulatum Quantitative Antigen EIA on patient samples. We acknowledge the Hubert-Yeargan Center for Global Health at Duke University for critical infrastructure support for the Kilimanjaro Christian Medical Centre-Duke University Collaboration.

Funding: This research was supported by an International Studies on AIDS Associated Co-infections (ISAAC) award, a United States National Institutes of Health (NIH) funded program (U01 AI062563). Authors received support from NIH awards ISAAC (ABM, VPM, LJM, GDK, HOR, JAC); AIDS International Training and Research Program D43 PA-03-018 (ABM, VPM, HOR, JAC); the Duke Clinical Trials Unit and Clinical Research Sites U01 AI069484 (VPM, JAC), the Duke Center for AIDS Research P30 AI 64518 (L-YY, S-CC); the Center for HIV/AIDS Vaccine Immunology U01 AI067854 (JAC); and the Hubert-Yeargan Center for Global Health at Duke University (SML).
References

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, years</th>
<th>Gender</th>
<th>HIV status (CD4 if pos)</th>
<th>Urine Histoplasma antigen (ng/mL)</th>
<th>Serum Histoplasma antigen (ng/mL)</th>
<th>Mycobacterial blood culture</th>
<th>Aerobic blood culture</th>
<th>Blood parasite smear</th>
<th>Laboratory values a,b</th>
<th>Chest radiograph</th>
<th>Provisional and discharge diagnosis</th>
<th>Alive at follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>M</td>
<td>Infected CD4 15.4%</td>
<td>2.13</td>
<td>None Detected</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 3.1, HCT 34.0, Pts 257, Neut 2.5, Lym 0.4, Mono 200, Eos 279, Base 19</td>
<td>Pneumocystis carinii, L lung alveolar infiltrates R lung multiple cavitary lesions</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>F</td>
<td>Not infected</td>
<td><0.6</td>
<td>None Detected</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 1.6, HCT 14.8, Pts 128, Neut 0.3, Lym 1.2, Mono 112, Eos 19, Base 11</td>
<td>Normal</td>
<td>Anaemia, malaria</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>F</td>
<td>Not infected</td>
<td>>390</td>
<td>Contaminated</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 10.5, HCT 19.2, Pts 36, Neut 8.7, Lym 7.6, Mono 74, Eos 13, Base 74</td>
<td>Nodular abnormalities, micronodules throughout both lungs</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>M</td>
<td>Not infected</td>
<td><0.6</td>
<td>None available for testing</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 3.0, HCT 44.3, Pts 25, Neut 1.5, Lym 0.7, Mono 777, Eos 3, Base 4</td>
<td>Not done</td>
<td>Malaria, typhoid, gastroenteritis</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>F</td>
<td>Infected CD4 10.2%</td>
<td>401</td>
<td>None available for testing</td>
<td>Not done</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 16.4, HCT 29.3, Pts 379, Neut 12.1, Lym 3.2, Mono 853, Eos 131, Base 49</td>
<td>Interstitial infiltrates probably due to edema</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>F</td>
<td>Infected CD4 10.2%</td>
<td>>390</td>
<td>>390</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 2.4, HCT 29.7, Pts 299, Neut 1.7, Lym 0.5, Mono 108, Eos 22, Base 14</td>
<td>Nodular abnormalities, Both lungs full of micronodules</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>F</td>
<td>Infected 91, 6%</td>
<td>2.37</td>
<td>None available for testing</td>
<td>Not done</td>
<td>Pos. Strept. pneumonia</td>
<td>Neg</td>
<td>WBC 10.2, HCT 15.7, Pts 246, Neut 6.9, Lym 2.8, Mono 530, Eos 0, Base 41</td>
<td>HIV, oral candidiasis, pulmonary TB</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>M</td>
<td>Infected 22, 3%</td>
<td>None available for testing</td>
<td>3.32</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 8.4, HCT 23.9, Pts 91, Neut 7.0, Lym 1.1, Mono 311, Eos 0, Base 4</td>
<td>Normal</td>
<td>HIV, malaria, pneumonia</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>F</td>
<td>Infected 8, 1%</td>
<td>None available for testing</td>
<td><0.6</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>WBC 18.8, HCT 28.5, Pts 395, Neut 16.0, Lym 0.9, Mono 1200, Eos 508, Base 94</td>
<td>HIV, pneumonia, Kaposis's sarcoma, pulmonary TB</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Characteristics and laboratory findings, patients with positive urine and serum *Histoplasma* antigen, northern Tanzania, 2007–8

Trans R Soc Trop Med Hyg. Author manuscript; available in PMC 2013 August 01.
<table>
<thead>
<tr>
<th>Age, years</th>
<th>Gender</th>
<th>HIV status (CD4 if pos)</th>
<th>Urine Histoplasma antigen (ng/mL)</th>
<th>Serum Histoplasma antigen (ng/mL)</th>
<th>Mycobacterial blood culture</th>
<th>Aerobic blood culture</th>
<th>Blood parasite smear</th>
<th>Laboratory values (^a,^b)</th>
<th>Chest radiograph</th>
<th>Provisional and discharge diagnosis</th>
<th>Alive at follow-up period</th>
</tr>
</thead>
</table>

Neg: Negative; Pos.: Positive; Strep.: Streptococcus.

\(^a\) Adult range: White blood count (WBC) 2.8–8.4*10^3/uL, Hematocrit (HCT) 32–50%, Platelets (Plts) 125–445*10^3/uL, Neutrophils (Neut) 0.8–5.0*10^3/uL, Lymphocytes (Lym) 0.8–5.0*10^3/uL, Monocytes (Mono) 56–840/uL, Eosinophils (Eos) 0–1008/uL, Basophils (Baso) 0–84/uL.

\(^b\) Pediatric range: (6–12 year olds) White blood count (WBC) 3.7–9.1*10^3/uL, Hematocrit (HCT) 31.9–43.5, Platelets (Plts) 94–530, Neutrophils (Neut) 1.2–5.0*10^3/uL, Lymphocytes (Lym) 1.6–4.7*10^3/uL, Monocytes (Mono) 300–800/uL, Eosinophils (Eos) 100–1500/uL, Basophils (Baso) 0–40/uL.